Charlas y oradores


Rajesh Menon
Laboratory for Optical Nanotechnologies
University of Utah, Utah, USA

  • Absorbance Modulation Optical Lithography (AMOL) 
  • Patterning via Optical Saturable Transformations (POST) 
  • Ultra-high efficiency photovoltaics via Diffractive Spectrum Separation 
  • Optimized Nanophotonics for efficient ultra-thin-film photovoltaics 
  • 3D tracking of surgical instruments 

Rajesh Menon has pioneered several technologies that will enable far-field optics to manipulate and image matter with nanoscale resolution, something that was thought impossible until a few years ago. His research has spawned over 50 publications, over 30 patents, and 2 spin-off companies. He has led several projects in nanopatterning and nanoscopy with support from DARPA, the NSF, US Air Force, and the MIT Deshpande Center for Technological Innovation. Among his honors are an NSF CAREER Award (2011) and the International Commission for Optics Prize (2009).
He currently directs the Laboratory for Optical Nanotechnologies at the University of Utah. Prior to that, Prof. Menon was a research engineer at MIT’s Research Laboratory of Electronics, where he remains a research affiliate. He holds S.M. and Ph.D. degrees from the Department of Electrical Engineering and Computer Science at MIT. In addition, he served as the Chief Technology Officer of LumArray, a company he co-founded with colleagues at MIT. 

Stefan Maier
Nanoplasmonics group
Imperial College, London, UK

  • Nanocavities: Fundamentals and applications in energy concentration and biosensing 
  • Optical and THz Metamaterials 
  • Nanoantennas and enhanced Light/Matter coupling 
  • Active Plasmonics and Plasmon Waveguides

Stefan Maier is Professor of Nanophotonics in the Department of Physics at Imperial College London, and co-director of the College's Centre for Plasmonics and Metamaterials. He obtained his PhD in Applied Physics at 2003 at the California Institute of Technology. Stefan has published over 130 papers in plasmonics and nanophotonics, is a fellow of OSA, and was awarded the Sackler Prize in the Physical Sciences and the Paterson Medal of the Institute of Physics. He further holds a Royal Society Wolfson Research Merit Award.

Andrea Bragas 
Quantum electronics Lab

  • High resolution optical microscopy
  • Plasmonic probes
  • Vibrations of plasmonic objects and ensembles
  • Linear and nonlinear optical properties of nanomaterials.

Andrea Bragas is one of the heads of the Quantum Electronics Lab at the University of Buenos Aires and professor at the School of Sciences. Her current research fields are focused on the fabrication, study and control of different isolated and interacting plasmonic objects with the aim of their application to high-resolution microscopies, chemical and biological sensing, bio-imaging, and development of nano-light sources.

Fernando Stefani

Nanophysics Group Lab

  • Metallic, semiconducting and magnetic nanoparticles
  • Organic fluorophores
  • Conjugated polymers
  • Supramolecular structures
  • Hybrid nanobiosystems
  • Proteins and DNA
  • Optical detection of single molecules and nanoparticles
  • Optothermal and optomechanical manipulation
  • Time-resolved fluorescence
  • Femtosecond pump/probe spectroscopy


Rajesh Menon
Laboratory for Optical Nanotechnologies
University of Utah, Utah, USA

(ver arriba)


A technique for creating deterministic structural complexity is essential to achieve high functionality at the nanoscale, whether in electronics, photonics, or molecular biology.Scanning-electron-beam lithography (SEBL) is the most widely used method in research, but it has a number of drawbacks. SEBL tends to be slow, expensive, prone to placement errors, and not compatible with organics and biological material. Ideally one would prefer to employ benign photons in the visible or near IR range for such patterning. However, the so-called far-field diffraction barrier (first realized by Abbé) limits the smallest feature achievable by wavelength, l to ~l/4. The spacing between nearest-neighbor patterns cannot be smaller than ~l/4. In this presentation, I will describe two distinct approaches being investigated in my laboratory to circumvent this limit and thereby enable optical nanopatterning with feature spacings smaller than l/4.

Stefan Maier
Nanoplasmonics group
Imperial College, London, UK

(ver arriba)


Nanoplasmonics allows the confinement of light on length scales far below the wavelength. This talk will describe some of the current fundamental frontiers of the field, such as nonlocal effects on nanometre length scales and transformation optics design of broadband light harvesting nanostructures. The second part will focus on applications in nonlinear light generation with high efficiency, multi-spectral biosensing, and photovoltaics.

Galo Soler-Illia

Chemistry of Nanomaterials Laboratory 

  • Chemical Synthesis of Organized Matter
  • Mesoporous Thin Films
  • Surface Modification
  • Plasmonics and Photonics
  • Metal-Oxide Interfaces
  • Catalysis

Galo Soler-Illia leads the Chemistry of Nanomaterials Laboratory at the CNEA, Buenos Aires, Argentina, and is Professor at the Dpt. of Inorganic Chemistry, UBA since 2004. He has published more than a hundred papers in the field of chemical synthesis of complex nanostructured matter. He has led national and international scientific projects, including networking and collaboration with the industry (PPG, TENARIS, RheinChemie, Darmex, Laring). He obtained several national prizes, and has been a fellow of CONICET, CNRS, UBA and Fundación Antorchas. His main current interest is the development of multiscale-patterned functional materials with applications in environment, health and energy through soft chemistry methods. More information can be found at


The rational design of nanocomposite made up of metallic nanoparticles (MNP) confined within a thin film oxide matrix holds a promise for obtaining integrated devices. Mesoporous oxide thin films (MOTF) represent attractive template matrices for the inclusion of MNP. The nano-derived properties of these systems are due to the metal NP dimensions, confinement, interfacial effects and the possibilities to combine the accessibility of the mesopore system and the electronic or surface properties of the MOTF matrix. In addition, optical quality NP-MOTF nanocomposites present unique potential in catalysis, electronic and photonic devices, data storage and sensors.

The use of physical and chemical “forces of Nature” such as soft chemistry and self-assembly permit to exert an accurate chemical control of MNP size, interface and positioning. This control is essential in order to master structure and size-derived effects such as electron transfer, Surface Plasmon resonance (SPR), fluorescence enhancement or surface-enhanced Raman scattering (SERS). We will present the chemical strategies leading to the reproducible preparation of gold and silver MNP-MOTF nanocomposites by controlled reduction or photoreduction of metal ions in contact with a mesoporous oxide matrix. Highly controlled plasmonic and photonic structures combining physical and chemical properties can be obtained as a consequence of controlling the spatial positioning of a variety of nano-building blocks such as MNP, MOTF and chemical species such as functional groups, polymers or biomolecules in monolayers, multilayers or lithography-assisted patterns.

Andrés Rieznik 
Unidad de Vinculación Estratégica de ARSAT (Empresa Argentina de Soluciones Satelitales)  
Investigador del CONICET

  • Fotónica, optoelectrónica y comunicaciones ópticas.
Andrés Rieznik nació en Buenos Aires en 1976. Es Doctor en Física por la Universidad Estatal de Campinas (UNICAMP, Brasil), investigador del CONICET y asesor de la Gerencia de Planeamiento Estratégico de ARSAT en el área de las comunicaciones ópticas. Se especializa en el modelaje de la propagación no lineal de la luz en fibras ópticas y sus aplicaciones a sistemas y dispositivos.


El gobierno nacional está construyendo a través de la empresa ARSAT una Red Federal de Fibras Ópticas (REFEFO) que cubrirá todo el territorio nacional con más de 50.000 kms de cables de fibra. En el marco del Plan Estratégico Argentina Conectada, la REFEFO cumplirá la función de columna vertebral para el transporte de datos. Será una red de cables de fibra y equipos de transmisión de última tecnología que cubrirá todo el territorio nacional y será capaz de transportar todos los datos de larga distancia que el país requiera. Describiremos este proyecto desde un punto de vista técnico y centrándonos en el modelaje físico de la red: su diseño y tipos de tecnología que se utilizarán (IP/MPLS/DWDM). Presentaremos el proyecto de software que estamos desarrollando para simular numéricamente el desempeño de la REFEFO, el proyecto FOP-ARSAT: ecuaciones relevantes, dispositivos modelados, efectos físicos considerados y potencialidades en aplicaciones fotónicas y optoelectrónicas.

Carlos Saavedra 
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Chile.
Centro de Óptica y Fotónica, Universidad de Concepción, Chile.
  • Instrumentación Óptica
  • Óptica Cuántica
  • Información Cuántica
Profesor Titular en la Universidad de Concepción desde el año 2001. Inicialmente sus actividades de investigación se orientaron a la Óptica Cuántica. Posteriormente, desde el año 1997 a la fecha ha participado
activamente investigando en diversas temáticas en Información Cuántica, desde el año 2005 con énfasis en el desarrollo de actividades experimentales . Recientemente, sus actividades de investigación han estado orientadas fuertemente en temas de instrumentación óptica, donde junto a otros investigadores de CEFOP
han dado un fuerte impulso a: Microscopía de desenfoque, aplicaciones biológicas; Pinzas Ópticas y; DOAS. Adicionalmente, ha estado en forma permanente ligado a actividades de difusión especialmente orientadas a
estudiantes y público general.


En esta charla se presentará la implementación experimental de un nuevo método para la generación dinámica de pinzas ópticas múltiples. El nuevo montaje experimental permite generar cada uno de las trampas con un estado de polarización lineal independiente y orientación arbitraria. También es posible el control simultáneo de rotación independiente para cada trampa. El haz láser, tanto para la generación de trampas múltiples y de control de polarización, ha sido modulada utilizando un único cristal líquido. Se presentarán los resultados experimentales de desplazamiento controlado, la orientación y la rotación de las partículas birrefringentes. Además, se presentarán algunas de las aplicaciones que se encuentran en estudio empleando este sistema [1].

[1] A. Arias, S. Etcheverry, P. Solano, J. P. Staforelli, M. J. Gallardo, H. Rubinsztein-Dunlop, and C. Saavedra, Optics Express, Vol. 21, Issue 1, pp. 102-111 (2013).

María José Galante
Instituto de Investigaciones en Ciencia y Tecnología de Materiales, CONICET
Universidad Nacional de Mar del Plata

  • Síntesis y caracterización de materiales funcionales por modificación de polímeros tradicionales
  • Nanocompuestos poliméricos 
  • Azopolímeros: polímeros inteligentes que contienen grupos azobenceno

Licenciada en Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (1983-1989). Doctora en Ciencia de Materiales, INTEMA, Facultad de Ingeniería, Universidad
Nacional de Mar del Plata (1989-1993). Postdoctorado en Florida State University (USA) (1994-1995).
ESTADÍAS EN EL EXTRANJERO: INSA de Lyon (Francia) (1998). Universidad del País
Vasco, San Sebastián (España) (2008). 


We will describe the synthesis and characterization of polymers modified with the addition of azobenzene moieties in their structure. The possible application of these materials in optics and photonic devices will be evaluated. A general scope on the resulting motion of azobenzene isomerization in polymers will be given, showing that the scale range of these movements goes from little reorientation of the azobenzene group to massive motion of polymeric material.
The lecture will be divided in three main sections, resultant of the analysis of the three types of motions associated to the photoinduced isomerization process of the azobenzene: the chromophore motion at the first level, the nano-domain motion at the second level, and the third type of motion at an even larger scale; it can be called macroscopic motion.

Felix Requejo
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CONICET,  Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de la  Plata

Más de 80 publicaciones en revistas internacionales con referato y 300 presentaciones comunicaciones en congresos nacionales e internacionales. Director del Grupo SUNSET del INIFTA y del Laboratorio de Absorción de RX.
Asesor científico del Programa de Nanotecnología para el “Fortalecimiento de la Competitividad de las PYMES y Creación de Empleo en Argentina” (MinCyT), miembro del Sistema Nacional de Rayos X (MinCyT). Miembro del Comité Binacional Argentino-Brasilero para la cooperación en el Proyecto del Sincrotrón brasilero SIRIUS.
Premio “Cristina Giordano” 2011-2012 de la Asociación Fisicoquímica Argentina.
Premio Konex 2013 en Nanotecnología 


Fundamental properties of nanoparticles (NPs) depend on simple parameters like their morphology, size, crystal structure, and composition. Novel chemical or physical methods based, for instance, on colloidal syntheses have been developed a precise control on shape and size, thus allowing studies to determine the correlation between physical, chemical and structural properties in nanomaterials. Synchrotron-based methodologies (XAFS, XMCD, SAXS, XES, GISAXS, XPS, etc.) allow the experimental determination of atomic distribution, size, shape, composition, structure, with surface or bulk sensitivity. We present here a set of experimental analysis on complex nanoparticles and nano-arrrays in order to show the capabilities of those techniques and their unique characteristics for a multi-technique approach on nanomaterials characterization. In particular we present our studies on core-shell iron oxide doped with Mo and CoxPty NPs and CoSi2 nano-arrays in silicon, characterized by soft and hard X-rays using EXAFS, XANES, SAXS, XPS, and GISAXS.

Ariel Levenson
Laboratoire de Photonique et de Nanostructures, UPR20

Centre National de la Recherche Scientifique, France 

  • Slow light propagation,
  • Excitability, Rogue waves
  • Triple-photon quantum states
  • Electromagnetically Induced Transparency and Coherent Population Oscillations
  • Semiconductor photonic crystals
  • Microstructured fibres
  • Waveguide arrays
  • Er-doped crystals

Born in Argentina in 1957, he joined in 1988 the CNET laboratory, former R&D centre of France Telecom, where he has been working in ultrafast optical nonlinearities in semiconductors and in quantum optics. In 1997 he become CNRS senior scientist at the “Laboratoire de Photonique et de Nanostructures”, where he is the leader of the PHOTONIQ group. His present main domain of researches is classical, nonlinear and quantum optics, in nano and microstructures. He is the past director of the “Centre of Nanoscience –Île-de-France Region; C’Nano-IdF” and is the director of the C’Nano national network that coordinates the activities of the 6 regional C’Nanos and all the research teams that belong to French academic laboratories developing activities in the nanoscience and nanotechnology domain.


Coupling light resonantly into a nanocavity mode is a rather difficult task, when accomplished, new avenues are open to efficiently produce nonlinear coherent interactions. We discuss recent results on optical bistability, excitability, symmetry breaking and slow light in semiconductor L3 Photonic Crystal nanocavities and coupled nanocavities.

No hay comentarios:

Publicar un comentario